skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pingel, Nickolas_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insights into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2Z) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local GroupL-band Survey (LGLBS) enabled these detections, due to its high spatial (15 pc for Hiemission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline for searching for Hiabsorption at high angular resolution and extracting associated Hiemission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32 ± 6 K, a mean CNM column density of 3.1 × 1020cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking nondetections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hiabsorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hiemission. We also analyze a nearby sightline with deep, narrow Hiself-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hαemissions suggests a close link between the colder, denser Hiphase and star formation in NGC 6822. 
    more » « less
  2. ABSTRACT We present the largest Galactic neutral hydrogen H i absorption survey to date, utilizing the Australian SKA Pathfinder Telescope at an unprecedented spatial resolution of 30 arcsec. This survey, GASKAP-H i, unbiasedly targets 2714 continuum background sources over 250 square degrees in the direction of the Magellanic Clouds, a significant increase compared to a total of 373 sources observed by previous Galactic absorption surveys across the entire Milky Way. We aim to investigate the physical properties of cold (CNM) and warm (WNM) neutral atomic gas in the Milky Way foreground, characterized by two prominent filaments at high Galactic latitudes (between $$-45^{\circ }$$ and $$-25^{\circ }$$). We detected strong H i absorption along 462 lines of sight above the 3$$\sigma$$ threshold, achieving an absorption detection rate of 17 per cent. GASKAP-H i’s unprecedented angular resolution allows for simultaneous absorption and emission measurements to sample almost the same gas clouds along a line of sight. A joint Gaussian decomposition is then applied to absorption-emission spectra to provide direct estimates of H i optical depths, temperatures, and column densities for the CNM and WNM components. The thermal properties of CNM components are consistent with those previously observed along a wide range of Solar neighbourhood environments, indicating that cold H i properties are widely prevalent throughout the local interstellar medium. Across our region of interest, CNM accounts for $$\sim$$30 per cent of the total H i gas, with the CNM fraction increasing with column density towards the two filaments. Our analysis reveals an anticorrelation between CNM temperature and its optical depth, which implies that CNM with lower optical depth leads to a higher temperature. 
    more » « less